XFdtd

Computation of Fields and SAR for MRI with FDTD Simulation

Computation of Fields and SAR for MRI with FDTD Simulation

The simulation procedure allows the coil designer to get quick feedback on the performance of the device, without the time or cost of producing numerous prototypes. The further ability to simulate the structure in practical use, such as the coil around a body part, permits the designer to optimize the device under loaded conditions and ensure that the regulated limits such as SAR are within thresholds. In this article, a SAR analysis for an MRI system is presented using XFdtd.

Using EM Simulation for 5G Design E-Book

Using EM Simulation for 5G Design E-Book

Download examples that demonstrate how EM simulation software solves challenges related to 5G and MIMO. Examples include MIMO and array design, 5G urban small cells, mmWave and beamforming

Wireless Charging Applications using XFdtd® EM Simulation Software

Wireless Charging Applications using XFdtd® EM Simulation Software

Wireless power transfer is an emerging technology used in many applications, including consumer electronics, electric vehicles, and biomedical implants, and will undoubtedly see continued growth over the next decade and beyond. This presentation demonstrates how XFdtd can be used to simulate and analyze wireless charging systems.

Time Domain Electromagnetic / Circuit Co-Simulation

Time Domain Electromagnetic / Circuit Co-Simulation

Using a new electromagnetic/circuit co-simulation capability based on the FDTD method, the process of importing broadband circuit models into an EM simulation project, optimizing the overall design, and calculating important quantities such as S-parameters, radiation patterns, and system efficiency is demonstrated in this MicroApps presentation from IMS 2018.

Electrostatic Discharge (ESD) Simulation and Prediction for RF Devices

Electrostatic Discharge (ESD) Simulation and Prediction for RF Devices

This presentation demonstrates a new multiphysics-based ESD analysis capability which allows the ESD testing process to be analyzed via computer simulation. This will save companies time and money by allowing ESD protection to be optimized during the design phase, thus reducing the number of prototypes required to be built and tested.

Full Wave Matching Circuit Optimization Shortens Design Iterations

Full Wave Matching Circuit Optimization Shortens Design Iterations

Full wave matching circuit optimization (FW-MCO) is a new technology that combines full wave, 3D EM simulation with circuit optimization into a novel approach for solving an age-old RF problem: determining which component values provide the desired match for a given matching network layout. This article describes the design process using the design of a matching circuit for a GPS-Bluetooth antenna.

Overview of XFdtd's Circuit Element Optimizer

Overview of XFdtd's Circuit Element Optimizer

XF’s Circuit Element Optimizer utilizes full wave analysis to select the component values for a given printed circuit board (PCB) layout. The tool allows design engineers to optimize matching circuit lumped element values directly in the EM layout where the coupling from multiple antennas and the ground return current paths are taken into account. This whitepaper gives an overview of how the Circuit Element Optimizer works and the benefits it provides.

Introduction to FDTD Electromagnetic Simulation for Automotive Radar

Introduction to FDTD Electromagnetic Simulation for Automotive Radar

Electromagnetic simulation has been used by RF engineers for many years to aid the design of automotive radar sensors, but the increasing demands of advanced driver assistance systems (ADAS) are changing the methods used.  This paper introduces FDTD’s advantages for automotive radar circuit and systems level designers, including simulation of very large problems, more efficient memory requirements, and the ability to reveal sources of coupling.

Benefits of Time-Domain Electromagnetic Simulation for Automotive Radar

Benefits of Time-Domain Electromagnetic Simulation for Automotive Radar

This whitepaper demonstrates how XFdtd's time-domain approach enables rapid development by allowing engineers to determine the performance of a fully detailed sensor model installed behind a piece of fascia without needing to build prototypes and run tests in an anechoic chamber. The analysis of a 25 GHz sensor frames the discussion.