MIMO Array Design

Design and Simulation of 28 GHz Beamforming System and Antenna Array for 5G Network Base Stations

Design and Simulation of 28 GHz Beamforming System and Antenna Array for 5G Network Base Stations

This example is a more complete device for 28 GHz beamforming for 5G networks and includes an 8x8 patch antenna array, 1 to 8 power dividers and a Rotman lens initial stage. The design of the Rotman lens is performed using Remcom’s Rotman Lens Designer® (RLD) software, which produces a CAD version of the device for use in XFdtd®. In XFdtd, a set of eight 1 to 8 Wilkinson stripline power divider networks is designed to act as the connection between the Rotman lens and the antenna array. The performance of each stage is simulated and evaluated.

EM Simulation of 28 GHz Series-Fed Patch Antenna Array for 5G

EM Simulation of 28 GHz Series-Fed Patch Antenna Array for 5G

Series-fed patch elements forming an array are simulated to demonstrate antenna performance and beamforming including S-parameters, gain, and effective isotropic radiated power (EIRP) at 28 GHz.   Beam steering is performed in one plane by adjusting the phasing at the input ports to each of eight elements.

Simulation of MIMO Handset Antenna Array Performance with Varying Hand Positions

Simulation of MIMO Handset Antenna Array Performance with Varying Hand Positions

Performance of a 12-port handset antenna array operating in LTE bands 42/43 (3400-3800 MHz) and band 46 (5150-5925 MHz) is analyzed in XFdtd for varying hand hold positions on the device.  The results computed include S-parameters, Gain, Efficiency and Envelope Correlation Coefficient.